Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 956
1.
Immunol Lett ; : 106862, 2024 May 01.
Article En | MEDLINE | ID: mdl-38702033

BACKGROUND: Diabetic retinopathy (DR) stands as a prominent complication of diabetes. Berberine (BBR) has reported to be effective to ameliorate the retinal damage of DR. Studying the potential immunological mechanisms of BBR on the streptozotocin (STZ) induced DR mouse model will explain the therapeutic mechanisms of BBR and provide theoretical basis for the clinical application of this drug. METHODS: C57BL/6J mice were induced into a diabetic state using a 50 mg/(kg·d) dose of STZ over a 5-day period. Subsequently, they were subjected to a high-fat diet (HFD) for one month. Following a 5-week treatment with 100 mg/(kg·d) BBR, the concentrations of inflammatory factors in the mice's peripheral blood were determined using an enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin staining was employed to scrutinize pathological changes in the mice's retinas, while flow cytometry assessed the proportions of T-lymphocyte subsets and the activation status of dendritic cells (DCs) in the spleen and lymph nodes. CD4+T cells and DC2.4 cell lines were utilized to investigate the direct and indirect effects of BBR on T cells under high glucose conditions in vitro. RESULTS: Following 5 weeks of BBR treatment in the streptozotocin (STZ) mouse model of DR, we observed alleviation of retinal lesions and a down-regulation in the secretion of inflammatory cytokines, namely TNF-α, IL-1ß, and IL-6, in the serum of these mice. And in the spleen and lymph nodes of these mice, BBR inhibited the proportion of Th17 cells and promoted the proportion of Treg cells, thereby down-regulating the Th17/Treg ratio. Additionally, in vitro experiments, BBR directly inhibited the expression of the transcription factor RORγt and promoted the expression of the transcription factor Foxp3 in T cells, resulting in a down-regulation of the Th17/Treg ratio. Furthermore, BBR indirectly modulated the Th17/Treg ratio by suppressing the secretion of TNF-α, IL-1ß, and IL-6 by DCs and enhancing the secretion of indoleamine 2,3-dioxygenase (IDO) and transforming growth factor-beta (TGF-ß) by DCs. This dual action inhibited Th17 cell differentiation while promoting Treg cells. CONCLUSION: Our findings indicate that BBR regulate T cell subpopulation differentiation, reducing the Th17/Treg ratio by directly or indirectly pathway. This represents a potential therapeutic avenue of BBR for improving diabetic retinopathy.

2.
Life Sci ; : 122693, 2024 May 04.
Article En | MEDLINE | ID: mdl-38710277

Ovarian dysfunction stands as a prevalent contributor to female infertility, with its etiology intertwined with genetic, autoimmune, and environmental factors. Within the ovarian follicles, granulosa cells (GCs) represent the predominant cell population. Alterations in GCs, notably oxidative stress (OS) and the consequential surge in reactive oxygen species (ROS), play pivotal roles in the orchestration of ovarian function. Nrf2aa, a newly identified upstream open reading frame (uORF), is situated within the 5' untranslated region (5'UTR) of sheep Nrf2 mRNA and is regulated by melatonin, a crucial intrafollicular antioxidant. In this study, we have noted that Nrf2aa has the capacity to encode a peptide and exerts a negative regulatory effect on the translation efficiency (TE) of the Nrf2 CDs region. Further in vitro experiments, we observed that interfering with Nrf2aa can enhance the cellular functionality of GCs under 3-np-induced oxidative stress, while overexpressing Nrf2aa has the opposite effect. Furthermore, overexpression of Nrf2aa counteracts the rescuing effect of melatonin on the cellular functions of GCs under oxidative stress conditions, including estrogen secretion, proliferation, apoptosis, and many more. Finally, we confirmed that Nrf2aa, by regulating the expression of key proteins in the Nrf2/KEAP1 signaling pathway, further modulates the antioxidant levels in GCs.

3.
RSC Adv ; 14(20): 14303-14310, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38690105

The aim of this study was to evaluate the effect of five varieties on the quality of herbaceous peony tea by physicochemical analysis, sensory evaluation, antimicrobial capacity analysis and a combination of gas chromatography with quadruple time of flight mass spectrometry (GC-QTOF). Antibacterial and antioxidant analyses revealed that the ABTS free radical scavenging rate of HPT was high, ranging from 82.20% to 87.40% overall. 'Madame Claude Tain' had the strongest inhibitory ability against Staphylococcus aureus with an inhibitory effect of 12.65 mm. The sensory evaluation showed that 'Angel cheeks' had the highest overall sensory score. GC-QTOF combined with orthogonal projections to latent structures discriminant analysis showed that 22 volatile components were the key aroma components of herbaceous peony tea. Different varieties of herbaceous peony tea had a unique characteristic aroma. 'Angel cheeks' imparted lily-like and chestnut fragrances, which were attributed to linalool and 3,5-octadien-2-one. 'Sea Shell', 'Mother's Choice' and 'Angel Cheek' had a medicinal aroma, which may be due to the presence of o-cymene. Overall, 'Angel cheeks' was the most suitable for developing high-quality herbaceous peony tea in five varieties. This study provided a theoretical basis and technical guidance for the development of herbaceous peony.

4.
J Anim Sci ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38727196

Insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), a significant member of the conserved RNA-binding protein family, plays various roles in numerous physiological and pathological processes. However, the specific function of IGF2BP2 in regulating endometrial function in sheep remains largely unknown. In this study, we observed a significant upregulation in IGF2BP2 mRNA abundance in the endometrium during the luteal phase (LP) compared to the follicular phase (FP) in Hu sheep. The knockdown of IGF2BP2 resulted in accelerated cell proliferation and migration of Hu sheep endometrial stromal cells (ESCs). Moreover, RNA sequencing analysis revealed that genes with significantly altered expression in IGF2BP2 knockdown cells were predominantly enriched in endometrial receptivity-related signaling pathways, such as cytokine-cytokine receptor interaction, NOD-like receptor, PI3K-AKT, and JAK-STAT signaling pathway. Additionally, the knockdown of IGF2BP2 significantly increased the expression of matrix metalloprotein 9 (MMP9), vascular endothelial growth factor (VEGF), and prolactin (PRL) in ESCs. The knockdown of IGF2BP2 was also observed to stimulate the PI3K/AKT/mTOR pathway by upregulating integrin ß4 (ITGB4) expression. Notably, the downregulation of ITGB4 attenuates IGF2BP2 knockdown-induced facilitation of proliferation and migration of Hu sheep ESCs by inhibiting the PI3K/AKT/mTOR pathway. Collectively, these findings highlight the important role of IGF2BP2 in regulating endometrial function, particularly through the modulation of ESC proliferation and migration via the PI3K/AKT/mTOR pathway.

5.
Am J Cancer Res ; 14(3): 1316-1337, 2024.
Article En | MEDLINE | ID: mdl-38590398

Hepatocellular carcinoma (HCC) is a prevalent and deadly form of cancer globally with typically unfavorable outcomes. Increasing research suggests that lactate serves as an important carbon contributor to cellular metabolism and holds a crucial part in the progression, sustenance, and treatment response of tumors. However, the contribution of lactate-related genes (LRGs) in HCC is still unclear. In this study, we analyzed TCGA datasets and screened 21 differentially expressed LRGs related to long-term survivals in HCC patients. Pan-cancer assays revealed that 21 LRGs expression exhibited a dysregulated level in man types of tumors and associated with clinical prognosis of tumor patients. The analysis of 21 LRGs successfully classified HCC samples into two molecular subtypes, and these two subtypes showed significant differences in clinical information, gene expression, and immune characteristics. Subsequently, based on the aforementioned 21 LRGs, a novel prognostic signature (DTYMK, IRAK1, POLRMT, MPV17, UQCRH, PDSS1, SLC16A3, SPP1 and LDHD) was generated by LASSO-Cox regression analysis. Survival assays demonstrated that the signature performed well in predicting the overall survival of patients with HCC. The results of Gene Set Variation Analysis indicated that the high GSVA scores were associated with poor prognosis. Moreover, we also investigated the correlation between GSVA scores and various signaling pathways in HCC. Among the nine prognostic genes, our attention focused on POLRMT which was highly expressed in HCC specimens based on TCGA datasets and several HCC cell lines. In addition, functional assays indicated that POLRMT distinctly promoted the proliferation, migration and energy metabolism of HCC cells via regulating Wnt/ß-Catenin signaling. Overall, through the establishment of a novel prognostic signature, we have provided potential clinical value for assessing the prognosis of HCC patients. Furthermore, our study has identified the high expression of POLRMT in HCC and demonstrated its crucial role in HCC cell proliferation. These findings hold great importance in advancing our understanding of the pathophysiology of HCC, identifying new therapeutic targets, and improving patient survival rates.

6.
Biosens Bioelectron ; 256: 116282, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38626615

Helicobacter pylori (H. pylori) infection correlates closely with gastric diseases such as gastritis, ulcers, and cancer, influencing more than half of the world's population. Establishing a rapid, precise, and automated platform for H. pylori diagnosis is an urgent clinical need and would significantly benefit therapeutic intervention. Recombinase polymerase amplification (RPA)-CRISPR recently emerged as a promising molecular diagnostic assay due to its rapid detection capability, high specificity, and mild reaction conditions. In this work, we adapted the RPA-CRISPR assay on a digital microfluidics (DMF) system for automated H. pylori detection and genotyping. The system can achieve multi-target parallel detection of H. pylori nucleotide conservative genes (ureB) and virulence genes (cagA and vacA) across different samples within 30 min, exhibiting a detection limit of 10 copies/rxn and no false positives. We further conducted tests on 80 clinical saliva samples and compared the results with those derived from real-time quantitative polymerase chain reaction, demonstrating 100% diagnostic sensitivity and specificity for the RPA-CRISPR/DMF method. By automating the assay process on a single chip, the DMF system can significantly reduce the usage of reagents and samples, minimize the cross-contamination effect, and shorten the reaction time, with the additional benefit of losing the chance of experiment failure/inconsistency due to manual operations. The DMF system together with the RPA-CRISPR assay can be used for early detection and genotyping of H. pylori with high sensitivity and specificity, and has the potential to become a universal molecular diagnostic platform.


Biosensing Techniques , Genotyping Techniques , Helicobacter Infections , Helicobacter pylori , Helicobacter pylori/genetics , Helicobacter pylori/isolation & purification , Humans , Helicobacter Infections/diagnosis , Helicobacter Infections/microbiology , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Genotyping Techniques/instrumentation , Genotyping Techniques/methods , Genotype , Bacterial Proteins/genetics , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/instrumentation , Microfluidics/methods , Antigens, Bacterial/genetics , Antigens, Bacterial/analysis , DNA, Bacterial/genetics , DNA, Bacterial/analysis , DNA, Bacterial/isolation & purification , Recombinases/metabolism
7.
Sci Rep ; 14(1): 9239, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649695

Monitoring and preventing coal-rock dynamic disasters are vital for safe mining. To investigate the time-frequency features of induced charge signals with coal damage and failure of roadways, the generation mechanism of free charge in loaded coal is analyzed and the induced charge monitoring test is conducted. According to the stress-induced charge-time curves, the time-domain features of charge signals at each loading stage are obtained. The wavelet threshold denoising approach and generalized Morse wavelet transform method are applied to denoise the raw signals and study the frequency-domain features. Further, the quantitative relationship between the de-noised induced charge signals and the degree of coal damage is established. The results show that the event number, amplitude and fluctuation degree of available induced charge signals are all at a low level in the compaction and elastic stages of the coal, which are mainly generated by the piezoelectric effect and predominantly represent discreteness. When entering the plastic and failure stages, the available signals are primarily produced by the crack propagation and triboelectric effects, with a significant increase in the event number, amplitude, and fluctuation degree. Then the induced charge signals gradually transit from discrete to continuous. Generally, the dominant frequency of the available induced charge signals during the coal damage process is concentrated at 0 ~ 11 Hz. The available induced charge is positively correlated with the degree of coal damage, which can perform the damage degree of coal mass, providing a new approach to evaluate the stability of roadway surrounding rocks.

8.
Carbon Balance Manag ; 19(1): 13, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622283

BACKGROUND: It is always a challenging job to compare forest resources as there is not a standardized spatial unit with location information. Google Plus Code, the newest alphanumeric geocoding system, uses 20 specifically selected letters and numbers to assign a unique global ID to every cell at different levels of a hierarchical grid system which is established based on latitude and longitude. It can be used as a standardized, unique global geospatial unit to segment, locate, quantitate, evaluate, and compare natural resources with area, boundary, and location information embedded. RESULTS: For this proof-of-concept case study, forest inventory data from 1987, 2002, and 2019 for the Zijin Mountain National Forest Park in Jiangsu Province, China was analyzed based on Google Plus Code grid/cell. This enabled the quantification of carbon storage at each cell allowing for the comparison of estimated carbon storage at same or different locations over time. CONCLUSIONS: This methodology is used to quantify the impacts of changing forest conditions and forest management activities on carbon storage with high spatial accuracy through the 32-year study period. Furthermore, this technique could be used for providing technical support and validation of carbon credit quantification and management.

9.
Curr Mol Med ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38659267

BACKGROUND: This study investigates the inhibitory mechanism of anlotinib on human Mantle Cell Lymphoma (MCL) cells through in vitro and in vivo experiments. METHODS: In vitro cellular experiments validate the effects of anlotinib on MCL cell proliferation and apoptosis. Moreover, a subcutaneous xenograft nude mice model of Mino MCL cells was established to assess the anti-tumour effect and tumour microenvironment regulation of anlotinib in vivo. RESULTS: The results indicate that MCL cell proliferation was significantly inhibited upon anlotinib exposure. The alterations in the expression of apoptosis-related proteins further confirm that anlotinib can induce apoptosis in MCL cells. Additionally, anlotinib significantly reduced the PI3K/Akt/mTOR phosphorylation level in MCL cells. The administration of a PI3K phosphorylation agonist, 740YP, could reverse the inhibitory effect of anlotinib on MCL. In the xenograft mouse model using Mino MCL cells, anlotinib treatment led to a gradual reduction in body weight and a significant increase in survival time compared to the control group. Additionally, anlotinib attenuated PD-1 expression and elevated inflammatory factors, CD4, and CD8 levels in tumour tissues. CONCLUSION: Anlotinib effectively inhibits proliferation and induces apoptosis in MCL both in vitro and in vivo. This inhibition is likely linked to suppressing phosphorylation in the PI3K/Akt/mTOR pathway.

11.
Photoacoustics ; 38: 100607, 2024 Aug.
Article En | MEDLINE | ID: mdl-38665365

Ring-array photoacoustic tomography (PAT) system has been widely used in noninvasive biomedical imaging. However, the reconstructed image usually suffers from spatially rotational blur and streak artifacts due to the non-ideal imaging conditions. To improve the reconstructed image towards higher quality, we propose a concept of spatially rotational convolution to formulate the image blur process, then we build a regularized restoration problem model accordingly and design an alternating minimization algorithm which is called blind spatially rotational deconvolution to achieve the restored image. Besides, we also present an image preprocessing method based on the proposed algorithm to remove the streak artifacts. We take experiments on phantoms and in vivo biological tissues for evaluation, the results show that our approach can significantly enhance the resolution of the image obtained from ring-array PAT system and remove the streak artifacts effectively.

12.
STAR Protoc ; 5(2): 103023, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38640064

Social cooperation is fundamentally important for group animals but rarely studied in mice because of their natural aggressiveness. Here, we present a new water-reward assay to investigate mutualistic cooperative behavior in mice. We describe the construction of the apparatus and provide details of the procedures and analysis for investigators to characterize and quantify the mutualistic cooperative behavior. This protocol has been validated in mice and can be used for investigating mechanisms of cooperation. For complete details on the use and execution of this protocol, please refer to Zhang et al. and Wang et al.1,2.

13.
Diagn Microbiol Infect Dis ; 109(3): 116322, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38677053

Tuberculosis (TB) is caused by Mycobacterium tuberculosis and is a major global health concern. Neutrophils play a significant role in TB infection and patient outcomes. This study aimed to identify gene modules associated with neutrophil infiltration in TB samples using WGCNA. Gene ontology and enrichment analyses were performed, and a random forest model was constructed to identify differentially expressed genes. K-means clustering was used to classify samples into subtypes, and immune-related scores, PD-L1 expression, HLA expression, and gene enrichment analysis were evaluated. The blue module showed significant correlation with neutrophils and enrichment in immune-related processes. The model exhibited good classification performance, and subtype 1 demonstrated higher immune-related scores, PD-L1 expression, HLA class I molecule expression, and immune-related pathway enrichment. These findings enhance our understanding of TB pathogenesis and provide potential targets for diagnosis and treatment strategies.

14.
Anim Reprod Sci ; 265: 107457, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38677100

The anterior pituitary plays a critical role in the endocrine system, contains gonadotrophs, which regulate reproductive efficiency by secreting follicle-stimulating hormone (FSH) and luteinizing hormone (LH). PPP2R2A is a serine-threonine phosphatase that regulates reproductive functions in both females and males, its function in pituitary cells remain unclear. Hu sheep is a highly prolific breed, which makes it suitable for studying reproductive mechanisms. In this study, the relative abundances of PPP2R2A mRNA expression were higher in the pituitary of high-prolificacy (HF) Hu sheep compared to those of low-prolificacy (LF) Hu sheep. Additionally, we demonstrated that PPP2R2A promotes pituitary cell proliferation and gonadotropin secretion using the EdU assay and ELISA, respectively. Moreover, it inhibits pituitary cell apoptosis using flow cytometry. Furthermore, PPP2R2A may affect pituitary cell function by regulating the AKT/mTOR signaling pathway. In summary, our findings suggest that PPP2R2A may play a role in regulating pituitary function and influencing the secretion of gonadotropins.

15.
Sci Total Environ ; 928: 172321, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38604373

Understanding of the photochemical ozone (O3) pollution over the Pearl River Estuary (PRE) of southern China remains limited. We performed an in-depth analysis of volatile organic compounds (VOCs) data collected on an island (i.e., the Da Wan Shan Island, DWS) located at the downwind of Pearl River Delta (PRD) from 26 November to 15 December 2021. Abundances of O3 and its precursors were measured when the air masses originated from the inland PRD. We observed that the VOCs levels at the DWS site were lower, while the mixing ratio of O3 was higher, compared to those reported at inland PRD, indicating the occurrence of photochemical consumption of VOCs during the air masses transport, which was further confirmed by the composition and diurnal variations of VOCs, as well as ratios of specific VOCs. The simulation results from a photochemical box model showed that the O3 level in the outflow air masses of inland PRD (O3(out-flow)) was the dominant factor leading to the intensification of O3 pollution and the enhancement of atmospheric radical concentrations (ARC) over PRE, which was mainly contributed by the O3 production via photochemical consumption of VOCs during air masses transport. Overall, our findings provided direct quantitative evidence for the roles of outflow O3 and its precursors from inland PRD on O3 abundance and ARC over the PRE area, highlighting that alleviation of O3 pollution over PRE should focus on the impact of photochemical loss of VOCs in the outflow air masses from inland PRD.

16.
Plant Physiol Biochem ; 210: 108600, 2024 May.
Article En | MEDLINE | ID: mdl-38593488

Populus euphratica phospholipase Dδ (PePLDδ) is transcriptionally regulated and mediates reactive oxygen species (ROS) and ion homeostasis under saline conditions. The purpose of this study is to explore the post-transcriptional regulation of PePLDδ in response to salt environment. P. euphratica PePLDδ was shown to interact with the NADP-dependent malic enzyme (NADP-ME) by screening the yeast two-hybrid libraries. The transcription level of PeNADP-ME increased upon salt exposure to NaCl (200 mM) in leaves and roots of P. euphratica. PeNADP-ME had a similar subcellular location with PePLDδ in the cytoplasm, and the interaction between PeNADP-ME and PePLDδ was further verified by GST pull-down and yeast two-hybrid. To clarify whether PeNADP-ME interacts with PePLDδ to enhance salt tolerance, PePLDδ and PeNADP-ME were overexpressed singly or doubly in Arabidopsis thaliana. Dual overexpression of PeNADP-ME and PePLDδ resulted in an even more pronounced improvement in salt tolerance compared with single transformants overexpressing PeNADP-ME or PePLDδ alone. Greater Na+ limitation and Na+ efflux in roots were observed in doubly overexpressed plants compared with singly overexpressed plants with PeNADP-ME or PePLDδ. Furthermore, NaCl stimulation of SOD, APX, and POD activity and transcription were more remarkable in the doubly overexpressed plants. It is noteworthy that the enzymic activity of NADP-ME and PLD, and total phosphatidic acid (PA) concentrations were significantly higher in the double-overexpressed plants than in the single transformants. We conclude that PeNADP-ME interacts with PePLDδ in Arabidopsis to promote PLD-derived PA signaling, conferring Na+ extrusion and ROS scavenging under salt stress.


Arabidopsis , Homeostasis , Phospholipase D , Plant Proteins , Populus , Reactive Oxygen Species , Salt Stress , Sodium , Populus/metabolism , Populus/genetics , Populus/drug effects , Reactive Oxygen Species/metabolism , Sodium/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Salt Stress/genetics , Phospholipase D/metabolism , Phospholipase D/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Plants, Genetically Modified , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/drug effects , Salt Tolerance/genetics , Sodium Chloride/pharmacology , Two-Hybrid System Techniques
17.
Angiology ; : 33197241238404, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38451176

The epidemiology of renal artery atherosclerosis in community populations is poorly documented. This study aimed to determine the prevalence of renal artery plaque (RAP) and atherosclerotic renal artery stenosis (ARAS), and the association of plaque and stenosis with vascular risk factors and kidney disease markers among community-dwelling adults. We conducted a cross-sectional analysis of the Polyvascular Evaluation for Cognitive Impairment and Vascular Events (PRECISE) study. RAP and ARAS were evaluated by thoracoabdominal computed tomography angiography. A total of 3045 adults aged 50-75 years were included. The prevalence of RAP and ARAS was 28.7% and 4.8%, respectively. The prevalence of RAP and ARAS was 41.3% and 7.7% in individuals aged ≥60 years, 42.9% and 8.7% in hypertensives, and 45.4% and 8.5% in individuals with chronic kidney disease. Older age, hypertension, higher total cholesterol level, and lower high-density lipoprotein cholesterol level were independently associated with RAP and ARAS. A higher urinary albumin-creatinine ratio was independently associated with RAP, whereas a reduced estimated glomerular filtration rate was independently associated with ARAS. In conclusion, there was a non-negligible prevalence of RAP and ARAS among the older, community population in China.

18.
ACS Nano ; 18(11): 7688-7710, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38436232

Extracellular matrix (ECM) remodeling is accompanied by the continuous synthesis and degradation of the ECM components. This dynamic process plays an important role in guiding cell adhesion, migration, proliferation, and differentiation, as well as in tissue development, body repair, and maintenance of homeostasis. Nanomaterials, due to their photoelectric and catalytic properties and special structure, have garnered much attention in biomedical fields for use in processes such as tissue engineering and disease treatment. Nanomaterials can reshape the cell microenvironment by changing the synthesis and degradation of ECM-related proteins, thereby indirectly changing the behavior of the surrounding cells. This review focuses on the regulatory role of nanomaterials in the process of cell synthesis of different ECM-related proteins and extracellular protease. We discuss influencing factors and possible related mechanisms of nanomaterials in ECM remodeling, which may provide different insights into the design and development of nanomaterials for the treatment of ECM disorder-related diseases.


Extracellular Matrix , Nanostructures , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/analysis , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/metabolism , Tissue Engineering , Cell Adhesion
19.
Mikrochim Acta ; 191(4): 203, 2024 Mar 16.
Article En | MEDLINE | ID: mdl-38492084

Chiral covalent organic frameworks (CCOFs) possess a superior chiral recognition environment, abundant pore configuration, and favorable physicochemical stability. In the post-synthetic chiral modification of COFs, research usually focused on increasing the density of chiral sites as much as possible, and little attention has been paid to the influence of the density of chiral sites on the spatial structure and chiral separation performance of CCOFs. In this article, 1,3,5-tris(4-aminophenyl) benzene (TPB), 2,5-dihydroxyterephthalaldehyde (DHTP), and 2,5-dimethoxyterephthalaldehyde (DMTP) served as the platform molecules to directly establish hydroxyl-controlled COFs through Schiff base condensation reactions. Then the novel chiral selectors 6-deoxy-6-[1-(2-aminoethyl)-3-(4-(4-isocyanatobenzyl)phenyl)urea]-ß-cyclodextrin (UB-ß-CD) were pended into the micropore structures of COFs via covalent bond for further construction the [UB-ß-CD]x-TPB-DMTP COFs (x represents the density of chiral sites). The chiral sites density on [UB-ß-CD]x-TPB-DMTP COFs was regulated by changing the construction proportion of DHTP to obtain a satisfactory CCOFs and significantly improve the ability of chiral separation. [UB-ß-CD]x-TPB-DMTP COFs were coated on the inner wall of a capillary via a covalently bonding strategy. The prepared open tubular capillary exhibited strong and broad enantioselectivity toward a variety of chiral analytes, including sixteen racemic amino acids and six model chiral drugs. By comparing the outcomes of chromatographic separation, we observed that the density of chiral sites in CCOFs was not positively correlated with their enantiomeric separation performance. The mechanism of chiral recognition [UB-ß-CD]x-TPB-DMTP COFs were further demonstrated by molecular docking simulation. This study not only introduces a new high-efficiency member of the COFs-based CSPs family but also demonstrates the enantioseparation potential of CCOFs constructed with traditional post-synthetic modification (PSM) strategy by utilizing the inherent characteristics of porous organic frameworks.

20.
Front Plant Sci ; 15: 1344110, 2024.
Article En | MEDLINE | ID: mdl-38525147

Introduction: Oat (Avena nuda L.) and common vetch (Vicia sativa L.) intercropping in the northern regions of China has resulted in substantial production capabilities. However, there is currently a dearth of comprehensive research on whether this intercropping system can enhance productivity through increased sowing densities and underlying interspecies interaction mechanisms. Methods: A two-year field experiment was conducted in 2022 and 2023 to investigate the yield, biological efficiency, economic efficiency, and competition indicators of oats and common vetch in a high-density intercropping system. Two cropping patterns (monocropping and intercropping) and five sowing densities (D1: 4.5×106 plants ha-1; D2:5.4×106 plants ha-1; D3:6.3×106 plants ha-1; D4: 7.2×106 plants ha-1; and D5: 8.1×106 plants ha-1) were arranged in a randomized block design. Results: At the same sowing density, the intercropped oats exhibited greater grain yield than the monocultures. Increasing the oat sowing density significantly enhanced oat yield, with the D3 level in intercropping showing the highest yield increase, ranging from 30.98% to 31.85%, compared with the monoculture. The common vetch intercropping grain yield was maximized in the D2 treatment. The land equivalent ratio was maximized at the D2 level in both years and was significantly higher than D1, with the land equivalent coefficient, system productivity index, and percentage yield difference suggesting that increasing oat sowing densities improved the productivity of the intercropping system, with the best performance observed at the D2 level. For both years, the proportionate actual yield loss of oat was the highest at the D3 level; significantly surpassing D1, proportionate actual yield loss of common vetch and actual yield loss were the highest at level D2, both significantly surpassing D1. These indicates that appropriate densification contributes to the realization of the advantages of intercropping. With an increased oat sowing density, the economic benefits of the intercropping system were maximized at the D2 and D3 levels. Regarding intercropping competition, oat was the dominant crop under different sowing densities (Aggressivity for oat (AO)>0, relative crowding coefficient for oat (KO)>1, competition ratio for oat (CRO)>1), whereas common vetch was the inferior crop. Compared with the D1 level, the D2 level harmonized the aggressivity, competitive ratio, and relative crowding coefficients of oat and common vetch, significantly increasing crowding coefficient for common vetch (KV) and competition ratio for common vetch by 19.76% to 21.94% and 4.80% to 7.51%, respectively, while reducing KO and CRO. Discussion: This result suggests that in the intercropping of common vetch and oat in alpine regions, rational densification can harmonize interspecific competition and thus improve the biological efficiency and economic benefits of intercropping systems.

...